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Abstract. Stability of highly charged metal clusters in the electric field of an external ion is investigated
with the classical liquid drop model. We study the optimum shape of the cluster which has a local minimum
of the total energy, taking account of the effects of the surface charge polarization on the Coulomb energy
and the cluster deformation on the surface energy. We find that the cluster deformation greatly affects the
total energy of the system and that a cluster with a fissility larger than some critical value 0.7−0.8 can
become unstable against deformation. We investigate the local competition between the Coulomb force and
the surface tension at the cluster surface and show that the surface charge polarization which is induced
by the external electric field significantly affects the shape of the cluster and its stability.

PACS. 36.40.Qv Stability and fragmentation of clusters – 36.40.Wa Charged clusters

1 Introduction

Stability of charged metal clusters and their fission have
been investigated both experimentally [1–11] and theoreti-
cally [3,8,12–17]. Fission of metallic clusters is particularly
interesting on account of the similarities and differences
with the nuclear fission process [12].

Atomic nuclei and (charged) metal clusters can be ex-
pressed approximately as incompressible liquid drops due
to their saturation properties. In nuclear physics, heavy
elements, such as uranium, can be thermally activated by
nuclear reactions, for example, by the absorption of a neu-
tron. The nucleus deforms by the thermal fluctuation of
the collective energy and the fission takes place [18,19].
The fission of atomic nuclei is observed only in heavy
elements because the proton number of a nucleus is es-
sentially proportional to its mass number. Also the mass
number of a nucleus is limited to a value around 300 due to
the decay by fission. Whereas, for metal clusters, the size
and the charge can be chosen freely in principle. Hence,
rich physical phenomena are expected for metal clusters.

Charged metal clusters are produced from neutral clus-
ters either by laser ionization [1–6] or by ionization by
collision with a beam of highly charged ions [7–11]. The
latter method allows one to produce in peripheral colli-
sions, highly charged metal clusters with low excitation
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energy, which is particularly suitable to investigate the
instability induced by the Coulomb force.

In view of similarities between metal clusters and
atomic nuclei, the classical liquid drop model used in nu-
clear physics has been applied to estimate the macro-
scopic energy of a charged metal cluster and its stabil-
ity [12]. In this model, for atomic nuclei, the charges are
uniformly distributed inside the droplet, whereas for mul-
tiply charged metal clusters, the charges exist only on the
surface of the droplet and can be polarized. The polariza-
tion of the surface charge significantly affects the stability
of highly charged metal clusters, because it leads to a low-
ering of the energy barriers against fission [12].

Stability of a charged droplet against any small de-
formation is determined by the competition between the
repulsive Coulomb energy and the surface tension that
tends to keep a spherical shape. Over a century ago, Lord
Rayleigh [20] showed that for a spherical charged droplet,
the fissility parameter X which provides a measure of sta-
bility, is defined as the ratio of the Coulomb energy to
twice the surface energy, i.e. X = Ec/2Es. For X = 1,
any infinitesimal quadrupole deformation destabilizes the
droplet, because there is no energy barrier for the break-
up. For X > 1, higher order multipole infinitesimal defor-
mations destabilize the droplet [12,20].

In numerical calculations with generalized Cassinian-
oval parameterization, it was found that protrusions are
developed at the tips of a droplet already for X =
0.9, which leads to a Rayleigh-Taylor instability [21].
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For spheroidal deformations of a charged droplet, Krappe
[22] investigated analytically local stabilities. He com-
pared the Coulomb force which destabilizes the spheroid
with the surface tension which stabilizes it and showed
that the local stability at the tip of the spheroid could
be expressed in terms of a local fissility parameter asso-
ciated with a sphere which would have the same size and
charge. Setting the Coulomb force and the surface ten-
sion per unit area at the tip of the spheroid as Pc and Ps,
respectively, one has X = Pc/Ps. He also discussed the
effect of a homogeneous electric field along the symmetry
axis on the stability of the spheroidal droplet and showed
that the stability at the tip is expressed by an effective
fissility that is the product of the fissility X and a coeffi-
cient (larger than one) depending on the strength of the
electric field and the eccentricity of the spheroid.

In the present work, we consider a simple system com-
posed of a charged sodium cluster NaQ+

N with fissility X

greater than 0.6 and a sodium ion Na1+
1 , which corre-

sponds to the case that a charged metal cluster emits an
ion or an ion passes near a charged metal cluster. We in-
vestigate the stability of the highly charged metal cluster
in the external electric field of the ion with the classical
liquid drop model, taking account of the effect of the sur-
face charge polarization on the Coulomb energy and that
of the cluster deformation on the surface energy. Since
we calculate the static potential energy of the system, we
suppose that the contribution of the rotation energy of the
cluster to its deformation energy is small and that the rel-
ative motion of the system is slow enough for the cluster
to take an equilibrium shape.

The present work is an extension of that discussed in
reference [12]. In reference [12], they emphasize the im-
portance of the effect of surface charge polarization on
lowering the fission barriers for systems such that the
saddle-point is characterized by two separated spherical
fragments. In the present work, in addition to this effect,
we include surface deformations which should be also im-
portant to estimate the stability of charged metal clusters
more reliably.

In Section 2, we describe the procedure to calculate
the total energy of the system. Results are given in Sec-
tion 3 concerning the interaction energy, the shapes of the
clusters, and the stability of the clusters. A summary is
given in Section 4.

2 Energy calculation procedure

We describe here the procedure to calculate the total en-
ergy of a system made of a cluster and an ion within
the classical liquid drop model. We assume that the two
droplets (the cluster and the ion) are incompressible. To
take account of the surface charge polarization, we sup-
pose that the droplets are ideal conductors and the charges
are distributed only on surfaces. We also introduce the
cluster deformation so that the cluster has an optimal
shape to minimize the total energy.

2.1 Liquid drop energy

In the liquid drop model, the energy of a droplet is given
by the sum of the Coulomb energy Ec, the surface en-
ergy Es, and the volume energy which is neglected here
because we assume volume conservation. Hence the total
energy is expressed as

E = Ec + Es. (1)

The surface energy is proportional to the total surface area
S = S1 + S2 (the subscripts 1 and 2 are for the cluster
and the ion, respectively)

Es = σS, (2)

where σ (0.20 J/m2 for sodium at melting point [12]) is
the surface energy per unit area.

The Coulomb energy is expressed as a functional of
the surface charge density ρ1 and ρ2 (in this paper, we
use atomic units)

Ec[ρ1, ρ2] =
1
2

∫
S1

ρ1(r1)ρ1(r′1)
|r1 − r′1|

dS1dS′
1

+
1
2

∫
S2

ρ2(r2)ρ2(r′2)
|r2 − r′2|

dS2dS′
2

+
∫

S1,S2

ρ1(r1)ρ2(r2)
|r1 − r2| dS1dS2, (3)

where the first term, the second term and the last term
are the self energy of the cluster, that of the ion and the
interaction energy between the cluster and the ion, respec-
tively. ρ1 and ρ2 satisfy the charge conservation conditions∫

S1

ρ1(r1)dS1 = Z1, (4)∫
S2

ρ2(r2)dS2 = Z2. (5)

As we suppose that the two droplets are ideal conductors,
the electrostatic potential has to be constant throughout
each droplet. This is achieved by finding ρ1 and ρ2 which
minimize equation (3) under the constraints of the charge
conservation, equations (4, 5). It corresponds to finding a
local minimum of the following functional

F [ρ1, ρ2] = Ec[ρ1, ρ2] − φ1

∫
S1

ρ1(r1)dS1

− φ2

∫
S2

ρ2(r2)dS2, (6)

where φ1 and φ2 are Lagrange multipliers. Variation of
equation (6) with respect to ρ1 and ρ2 independently gives

φ1 =
∫

S1

ρ1(r′1)
|r1 − r′1|

dS′
1 +

∫
S2

ρ2(r2)
|r1 − r2|dS2, (7)

φ2 =
∫

S2

ρ2(r′2)
|r2 − r′2|

dS′
2 +

∫
S1

ρ1(r1)
|r1 − r2|dS1, (8)
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Fig. 1. Symmetry axis passing through the mass centers of
the cluster and the ion, axis (A) (left); axis (B) that is perpen-
dicular to axis (A) (right).

which are identical to the electrostatic potential of the
cluster and the ion, respectively. Equations (7, 8) are
solved numerically by using the method described in Ap-
pendix A of reference [23].

Using equations (4, 5, 7, 8) for equation (3), we obtain
the Coulomb energy as

Ec =
1
2
Z1φ1 +

1
2
Z2φ2. (9)

2.2 Deformation

The cluster surface is expanded in Legendre polynomials,
assuming the axial symmetry

R1(θ) = R0
1

(
1 +

∑
n

αnPn(cos θ)

)
/λ, (10)

R0
1 = rwsN

1/3
1 , (11)

where αn, λ and θ are the expansion coefficient of nth or-
der, the volume conservation factor and the polar angle be-
tween the radial direction and the symmetry axis, respec-
tively. R0

1 is the radius of the spherical cluster, where N1

is the size of the cluster and rws (4.0 Å for sodium) is
Wigner-Seitz radius. The ion is fixed to the spherical shape
which has the radius R0

2 = rwsN
1/3
2 with the size N2 = 1.

As for the symmetry axis, we consider the following
two cases. One is the axis passing through the mass centers
of the cluster and the ion: axis (A). The other is the axis
perpendicular to axis (A): axis (B), (see Fig. 1).

2.3 Energy minimization

The expansion coefficients αn’s are treated as deformation
parameters of the cluster. To minimize the total energy of
the system, these parameters are optimized by the con-
jugate gradient method [24] under the constraints of vol-
ume conservation and a fixed distance, Dcm, between the
cluster and ion mass centers. Consequently, we obtain the
total energy of the system as a function of Dcm.

3 Results

We consider clusters NaQ+
N which have a fissility 0.6 <

X < 0.9 (X = (16πσr3
ws)

−1Q2/N). The size N ranges
arbitrarily from a hundred to a thousand.

Table 1. Systems that are treated in Figure 2.

System Fissility X

Na18+
1000 + Na1+

1 0.75

Na19+
1050 + Na1+

1 0.80

Na19+
1000 + Na1+

1 0.84

Na20+
1000 + Na1+

1 0.93

The cluster shape is determined at each distance Dcm

by optimizing the deformation parameters αn’s in equa-
tion (10) to minimize the total energy of the system. The
number of deformation parameters is chosen to ensure the
convergence of the total energy of the system. In practice,
for axis (A), we take n = 2, 3 and 4 and for axis (B),
n = 2, 4, 6 and 8 (due to the spatial symmetry, odd orders
do not contribute).

In this section, we first describe the variation of the to-
tal energy with surface charge polarization and deforma-
tion. Next we show the shapes which minimize the total
energy. Then we refer to the local fissility which measures
the local competition between the Coulomb force and the
surface tension at the surface of a cluster. Lastly we dis-
cuss the stability of charged clusters in presence of an
external electric field.

3.1 Energy

In this subsection, we discuss the effects of surface charge
polarization and deformation on the total energy of the
system. As a typical example, we show in Figure 2 the
total energy of the systems that are given in Table 1.

The clusters have about the same size ∼1000 but dif-
ferent values of fissility X . We consider the following four
cases. In case 1, the cluster has a fixed spherical shape and
no surface charge polarization is taken into account, i.e.
the charges distribute uniformly on the surfaces. Case 1
thus corresponds to two point charges. In case 2, the clus-
ter has still a fixed spherical shape but the polarization
is now taken into account. In cases 3 and 4, the spherical
shape constraint is relaxed; both the polarization and the
cluster deformation are taken into account for axis (A)
and axis (B) (cases 3 and 4, respectively).

The energies for cases 1 and 2 are calculated up to
the touching distance of the spherical cluster and the ion
(which is represented by the vertical dotted line in Fig. 2).
Comparing case 2 with case 1, the decrease of the total
energy due to charge polarization can be seen; the effect
becomes larger as Dcm becomes smaller. At small Dcm,
one sees that there are energy barriers (maxima of the
energy lines) for case 2. It means that the total Coulomb
force acting on between the cluster and the ion changes
from a repulsive one into an attractive one [12], as the
result of the negative charge that is induced on the surface
of the cluster facing the ion.

The polarization induced energy shift at the touching
distance is about 1.5 eV and it does not change much
for all systems listed in Table 1. Because the ion size is
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Fig. 2. Total energy as a function of distance, Dcm, between mass centers of a cluster and an ion. The dotted line and the solid
one are for spherical shapes without polarization (case 1) and with polarization (case 2), respectively. The dashed-dotted line
and the solid one with circles are for cases 3 and 4 where both the polarization and the deformation are taken into account for
axis (A) and axis (B), respectively. The vertical dotted line indicates the distance where the spherical cluster and the ion are
touching. The origin of the energy is calibrated to the total energy of the system at infinite distance Dcm.

small compared with the cluster size (R1 = 21.2 Å for
N = 1000 and R2 = 2.1 Å), the contribution of the ion
polarization to the total energy is very small. If the ion
is a point charge, the variation of the total energy of the
system due to polarization is determined by the cluster
radius and the distance between the cluster and the point
charge irrespective of the charge of the cluster. The same
tendency is found even for smaller size clusters N ∼ 100
(R1 ∼ 10 Å). The energy variations due to the polarization
are almost the same (∼1.1 eV at the touching distance)
irrespective of X .

Inclusion of the deformation of the cluster in addition
to the polarization brings about a further variation of the
total energy for cases 3 and 4. We start the calculation
from a far distance Dcm with a spherical cluster as an
initial shape, and optimize the cluster shape as mentioned
above. We proceed the calculation toward the smaller Dcm

(one step is 0.5 Å) with an initial shape of the cluster given
by the optimum shape at the previous step.

As the ion approaches the cluster, the cluster deforms
into an oblate shape for axis (A) and into a prolate shape
for axis (B). The cluster develops a shape such that the
surface facing the ion stays apart from the ion for both
axis (A) and axis (B). Consequently, the polarization is
smaller compared with that without the deformation at
same Dcm. As a result of deformation, the total energy of
the system decreases from that without deformation. The

deformation of the cluster and the variation of the total
energy caused by the deformation become larger as Dcm

becomes smaller.
At small Dcm, a negative charge is induced on the sur-

face of the cluster facing the ion as in case 2, but it is
not large enough to cause an attractive force between the
cluster and the ion. Therefore the total energy increases
monotonously as Dcm decreases. In this study, we termi-
nate the calculation when the cluster and the ion touch
each other.

For X = 0.75, the energy for axis (A) is lower than
that for axis (B). However, for a larger fissility X = 0.80,
the energy for axis (B) is lower than that for axis (A)
at small Dcm and a crucial difference appears between
the cases for axis (A) and axis (B). For axis (A), a local
minimum of the total energy is always found, whereas for
axis (B), no local energy minima are found for Dcm < 22 Å
although the cluster and the ion are not touching yet. It
means that the external electric field of the ion induces
an instability of the cluster, even when the fissility of the
latter is less than unity. The same instability also occurs
for the clusters with X = 0.84 and X = 0.93 inside Dcm ∼
38 Å and ∼71 Å, respectively.

Thus we infer that for axis (A), a local minimum of
the total energy always exists irrespective of the cluster
size, the charge and the distance Dcm as far as X < 1. At
variance, for axis (B), the cluster becomes unstable in the
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Fig. 3. Critical distance, Dcrit
cm against fissility, X. Similar sizes

are connected with lines. Data with open circle means elon-
gated shape with neck.

Fig. 4. Cluster-ion surface separation distance, Ds (along the
line passing through the mass centers) against fissility, X.

external field of the ion, whenever the fissility of the cluster
exceeds some limiting value and Dcm is smaller than some
critical distance. We define the limiting value of the fissil-
ity as Xlimit, and define the critical distance as Dcrit

cm . In
Figure 3, we show the relation of the critical distance Dcrit

cm

to the fissility X for various sizes N and charges Q. In this
figure, the points which have about the same cluster size
are connected with lines. Along each line, the smallest X
expresses Xlimit for this size. For instance, Xlimit is 0.8 for
N ∼ 1000 and is 0.7 for N ∼ 100. Dcrit

cm becomes larger
as X increases. Dcrit

cm also increases as the size increases.
It is found that the energy at Dcrit

cm for axis (B) is lower
than that for axis (A) when the instability occurs.

In Figure 4, we also show the distance between the
surfaces of the cluster and the ion (denoted as Ds) for the
same systems that are shown in Figure 3. The distance Ds

is measured along the line passing through the mass cen-
ters of the cluster and the ion. In contrast to Dcrit

cm , the
surface distance Ds (at Dcrit

cm ) is approximately the same
for the clusters with similar fissility X but with different

Na18+
1000(X = 0.75) + Na1+

1 , Axis (A)

Na18+
1000(X = 0.75) + Na1+

1 , Axis (B)

Na20+
1000(X = 0.93) + Na1+

1 , Axis (A)

Fig. 5. Shapes of a cluster NaQ+
1000 in presence of an ion at

touching distance, Dcm = 23.3 Å. From the top, X = 0.75 for
axis (A), X = 0.75 for axis (B) and X = 0.93 for axis (A).

size N , except for N ∼ 100. This result suggests that the
polarization at the surface facing the ion plays an impor-
tant role in determining the stability of the cluster.

3.2 Cluster shape

In the top and the middle of Figure 5, we show the cluster
shape for the system Na18+

1000(X = 0.75) + Na1+
1 at the

distance Dcm = 23.3 Å where the spherical cluster and the
ion are touching, for axis (A) and axis (B), respectively.
The clusters develop oblate shapes for axis (A) and prolate
shapes for axis (B) in order to keep their surface away from
the ion and to reduce the Coulomb energy. In the bottom
of the figure, the system Na20+

1000(X = 0.93)+Na1+
1 at the

same Dcm is shown for axis (A). Comparing the top with
the bottom, one can see that the deformation becomes
larger as the fissility increases, which is associated with a
large variation of the total energy (see Fig. 2). From the
top to the bottom of Figure 6, one sees the shape of the
(N ∼ 1000) cluster for axis (B) at Dcrit

cm for X = 0.80, 0.84
and 0.93, respectively.

In the absence of an external field, a charged droplet
has a nearly spherical shape or a spheroidal shape at the
saddle point of the potential energy when the fissility X is
close to unity, and it has a dumbbell shape for lower fissili-
ties, X ≤ 0.8 [12,21]. If we suppose that this criterion also
holds for a cluster in an external electric field, the cluster
shape at the critical distance Dcrit

cm can be explained as fol-
lows. For X = 0.93, the cluster becomes unstable with a
slight deformation from the spherical shape, so Dcrit

cm is rel-
atively large. As X decreases, the cluster can deform more
before the instability occurs, and Dcrit

cm becomes smaller.
For X = 0.80, the cluster deforms enough to develop a
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Na19+
1050(X = 0.80) + Na1+

1 , Axis (B)

Na19+
1000(X = 0.84) + Na1+

1 , Axis (B)

Na20+
1000(X = 0.93) + Na1+

1 , Axis (B)

Fig. 6. Shapes of a cluster ∼ NaQ+
1000 in presence of an ion for

axis (B), from the top, at Dcrit
cm = 22.6 Å for X = 0.80, 38.3 Å

for X = 0.84 and 71.3 Å for X = 0.93.

necked elongated shape, which might lead to fission (see
the top of Fig. 6). However, for X ≤ 0.75, the deforma-
tion stays small even when the ion comes very close to the
cluster and the cluster does not go over the saddle point
(see the middle of Fig. 5). Hence the cluster is stable at
any distance Dcm.

In Figures 3 and 4, the point with a circle means that
the cluster has an elongated shape with a neck. It is seen
that clusters with X < 0.85 are neck shaped.

3.3 Local fissility

In the presence of an ion induced electric field, a charged
cluster with fissility X > Xlimit becomes energetically
unstable inside the distance Dcrit

cm , for axis (B). Within
the classical liquid drop model, the stability of a charged
droplet is determined by the competition between the
Coulomb energy and the surface energy. On the other
hand, investigating directly the local competition between
the Coulomb force and the surface tension at the surface
of the droplet would be also of interest. In this subsec-
tion, we discuss the local stability at the cluster surface in
terms of the competition between these forces at Dcrit

cm .
We here define the Coulomb force per unit area Pc(r1)

and the surface tension per unit area Ps(r1) at the surface
of the cluster r1. For an ideal fluid, the direction of Ps is
along the normal of the surface and is inward (in present
case). Ps is given by the Laplace’s formula in fluid me-
chanics:

Ps(r1) = 2σH(r1), (12)

with the mean curvature H(r1) given by the mean of the
two principal curvatures at the surface point r1. The sur-
face energy per unit area, σ, is assumed to be constant
throughout the surface. At the surface of an ideal conduc-
tor, the direction of Pc is along the normal of the surface
and its magnitude is equal to the energy density in the
electric field. Pc(r1) is expressed as (in atomic units)

Pc(r1) =
1
8π

E(r1)2 = 2πρ(r1)2, (13)

where ρ(r1) is the surface charge density, which is deter-
mined numerically in this work. Pc is always an outward
force irrespective of the sign of the surface charge density.

Following Krappe’s approach [22] who investigated the
local stability at the tip of a charged spheroid by compar-
ing Pc with Ps at the tip, we define a local fissility at each
point r1 on the surface

Xlocal(r1) ≡ Pc(r1)
Ps(r1)

· (14)

At infinite Dcm, the cluster has a spherical shape for
X < 1 and both Ps(r1) and Pc(r1) are constant; we denote
them as P 0

s and P 0
c , respectively. In that case, Xlocal(r1)

is constant all over the surface of the cluster and coincides
with X as one expects. As Dcm decreases and then the po-
larization and the deformation come in, Xlocal(r1) takes
different values from place to place.

For the system Na20+
1000(X = 0.93) + Na1+

1 , we show
Xlocal for axis (B) at Dcrit

cm = 72.3 Å in the middle of
Figure 7. We represent the position on the cluster sur-
face in spherical coordinates with the polar angle θ and
the azimuthal angle φ as shown in the top of Figure 7.
In the present numerical calculation, there are some area
near the poles (θ ∼ 0, π) where we cannot evaluate Pc ac-
curately. The polar axis is taken to be perpendicular to
the line passing through the mass centers of the cluster
and the ion, and to the geometrical symmetry axis of the
cluster, to evaluate Pc accurately at the tips of the cluster
that we are interested in.

Xlocal is larger at the surface opposite to the ion than
at the surface facing the ion, because of the distribution
of Pc. In the bottom of Figure 7, Pc (normalized by P 0

c ) of
the cluster for the same system is shown. The magnitude
of Pc reflects the charge density via equation (13). Due to
the presence of the positive charge of the ion, the positive
charge of the cluster is slightly biased toward the surface
opposite to the ion, on the whole. In particular, at the sur-
face facing the ion (marked by the white cross in the fig-
ure), the positive charge density is the smallest and hence
Xlocal is the smallest. Pc is the largest at the tips because
the charge density becomes large. But Ps (proportional to
the mean curvature H) is also the largest at the tip and
becomes smaller toward the equator. Hence Xlocal is the
largest at a place opposite to the ion but close to a tip.

If Xlocal(r1) becomes larger than unity at some r1, it
means that the Coulomb force surpasses the surface ten-
sion, so that the cluster will be locally unstable at this
place. In such a case, a protrusion might develop from the
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Fig. 7. Local fissility, Xlocal and Pc (normalized by P 0
c ) of a

cluster are shown in the middle and the bottom, respectively.
The polar axis, the polar angle θ and the azimuthal angle φ are
shown in the top. A white cross at θ = π/2, φ = π indicates
the point facing the ion where the line passing through the
mass centers intersects the cluster surface. Two black crosses
at θ = π/2, φ = π/2 and θ = π/2, φ = 3π/2 locate the two tips
of the prolate shape for axis (B). Data near the poles θ ∼ 0, π
where our calculations are inaccurate is not shown.

surface of the cluster and a small (positively) charged par-
ticle might be emitted. In the actual calculation, the devi-
ation |Xlocal−X | becomes larger as Dcm becomes smaller.
However, Xlocal is always found to be less than unity, even
when Dcm reaches Dcrit

cm .

3.4 Stability of clusters

In this subsection, we discuss the force that is effectively
acting on the surface of a charged cluster. Without an
external field, a droplet which has a fissility X < 1 is
stable with respect to spherical shape. In order to balance
the force which corresponds to the difference between P 0

s

and P 0
c , there must be a pressure of the liquid:

P 0
LD = P 0

s − P 0
c > 0. (15)

In an external field, due to surface charge polarization and
deformation, the forces effectively acting on at the surface
of the cluster do not vanish. In that case, Ps(r1) − Pc(r1)
takes different values from place to place and we can gen-
eralize equation (15) as

PLD =

∫
S1

(Ps − Pc)dS1∫
S1

dS1

, (16)

which is constant all over the cluster, knowing that the
pressure of a liquid is constant and directs outward along
the normal of the surface.

We define the effective force per unit area as the sum
of the forces acting on at the surface as

Peff(r1) ≡ PLD − Ps(r1) + Pc(r1). (17)

The direction of Peff is also along the normal of the sur-
face n̂. Here, the outward direction from the surface is set
to be the positive one. From the definition of PLD, the in-
tegral of Peff all over the surface vanishes as in the case of a
spherical cluster without an external field. The total force
acting on the cluster surface, i.e. the integration of Peff n̂
as a vector all over the surface has to coincide with the
total interaction Coulomb force between the cluster and
the ion.

In Figure 8, for the system Na20+
1000(X = 0.93) + Na1+

1
at Dcrit

cm , we show Peff (normalized by P 0
s ) for the three

types of deformation of the cluster: axis (B), the spherical
shape and axis (A), respectively.

Peff is negative (inward force) at the surface facing
the ion where the positive charge density decreases; here,
Ps is larger than the sum of Pc and PLD. On the other
hand, Peff is positive (outward force) at the opposite sur-
face where Ps is smaller than the sum of Pc and PLD (but
still Ps − Pc > 0, see Fig. 7). Along the line that separates
the points at the surface facing the ion from those opposite
to it, Peff almost vanishes for all deformations. That is, on
both the surfaces that faces the ion and that is opposite
to it, Peff acts to push the surfaces away from the ion.

In order to shed light on the relation between Peff and
the stability of the cluster, we evaluate the inward force
and the outward force as regard to X , N and the symme-
try axis. As a rough estimate, we consider the maximum
magnitude of the inward force (denoted by P near

eff ) and that
of the outward force (denoted by P far

eff ).
In Figures 9 and 10, we show P near

eff and P far
eff for

axis (B) and axis (A), respectively, for the same systems
as in Figures 3 and 4 (at Dcrit

cm ). These pressures are nor-
malized by P 0

s and the outward direction is the positive
one (the data in the figures is restricted to shapes without
neck). We also show the difference between P near

eff and P far
eff

(denoted by P diff
eff ) which is the sum of P near

eff and P far
eff (i.e.

the difference between the vectors, P near
eff n̂near − P far

eff n̂far)
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Fig. 8. Peff (normalized by P 0
s ) of a cluster for three deforma-

tions: axis (B), spherical shape, and axis (A) from the top to
the bottom, respectively. The coordinates system is the same
as in Figure 7: the white cross is at θ = π/2, φ = π, and the two
black crosses is at θ = π/2, φ = π/2 and θ = π/2, φ = 3π/2.
The two black crosses indicate the tips of the prolate shape for
axis (B), only.

to express the balance between the force acting on the
surface facing the ion and that opposite to the ion.

Neglecting small fluctuations of the data, P near
eff , P far

eff

and P diff
eff are determined essentially by X and are indepen-

dent of the size of the cluster. For axis (A), the magnitudes
of P near

eff and P far
eff increase slowly as X decreases, but P diff

eff
almost vanishes. For axis (B), as X decreases, the magni-
tude of P near

eff becomes larger, while that of P far
eff does not

Fig. 9. P near
eff , P far

eff and P diff
eff (including its sign and normalized

by P 0
s ), for axis (B).

Fig. 10. P near
eff , P far

eff and P diff
eff (including its sign and normal-

ized by P 0
s ), for axis (A).

change as much as P near
eff . Thus, P diff

eff takes negative value
and the magnitude becomes larger as X decreases.

The negative value of P diff
eff means that the cluster is

pressed by the difference between P near
eff and P far

eff along the
line passing through the mass centers of the cluster and
the ion. If we set the cluster shape to be spherical at Dcrit

cm ,
P diff

eff is again negative and the magnitude is larger than
that for axis (B). The cluster should deform, in order to
relax the pressure caused by the difference between P near

eff

and P far
eff , from a spherical shape into an oblate shape for

axis (A) and into a prolate shape for axis (B), respectively,
which is accordance with our results shown in Figures 5
and 6. For instance, the system in Figure 8, P diff

eff /P 0
s are

about 0.001, −0.019 and −0.026 for axis (A), axis (B) and
spherical shape, respectively.

As for the stability, for axis (A), P diff
eff stays almost con-

stant and close to zero. Hence the cluster is stable. On the
other hand, P diff

eff does not vanish for axis (B). Intuitively,
the cluster is pressed and becomes unstable inside Dcrit

cm
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where it passes over the saddle of the potential energy
barrier; the cluster is not stretched by Pc at the tip. As
P diff

eff becomes larger with decreasing X , the cluster is fur-
ther pressed and deforms largely. Since P diff

eff is determined
by X , we expect that P diff

eff has an important role in de-
termining the shape of the cluster. Actually, the shapes
of the clusters with same extent of X at Dcrit

cm are very
similar.

Let us consider the origin of the difference in Peff

among the different shapes for axis (A), axis (B) and the
spherical shape. P far

eff takes the almost same value for the
three different types of deformations. Hence P diff

eff reflects
the difference of P near

eff . In addition to the result in Fig-
ure 4, this result also suggests us that the polarization at
the surface facing the ion significantly affects the defor-
mation and the stability of the cluster.

4 Summary

In the present work, we have investigated the stability of
highly charged metal clusters (with fissility X < 1) in the
external electric field of an ion within the classical liquid
drop model, taking account of surface charge polarization
and deformation. We see that the effect of the cluster de-
formation on the total energy of the system is as important
as that of the polarization. As the ion approaches, the de-
formation of the cluster becomes larger. The deformation
is larger for the cluster with larger fissility, if the distance
between the mass centers of the cluster and the ion Dcm

is the same.
As for the deformation of the cluster, we consider the

two types of symmetry axis, i.e. axis (A) and axis (B)
(see Fig. 1). The cluster deforms into an oblate shape for
axis (A) and into a prolate shape for axis (B).

As an ion approaches, in the situation axis (B), a
charged cluster with X > Xlimit becomes energetically
unstable inside Dcrit

cm . When the instability occurs, the to-
tal energy of the system for axis (B) is lower than that for
axis (A) at Dcrit

cm . Xlimit ranges from 0.7 to 0.8, depend-
ing on the size of the cluster. The value of Dcrit

cm depends
on X and the size of the cluster, but its surface distance
between the cluster and the ion Ds is approximately de-
termined solely by X .

Investigating the effective force Peff acting on the sur-
face of the cluster at Dcrit

cm , we see that the stability and
deformation of a cluster significantly relate to the polar-
ization of the surface charge due to the external electric
field of the ion. The (positive) charge density at the surface
facing the ion decreases and that at the surface opposite to
the ion increases. Consequently, Peff directs inward at the
surface facing the ion and outward at the surface opposite
to the ion.

We find that the stability of the cluster and its pos-
sible deformation are roughly estimated by the differ-
ence P diff

eff between the maximum magnitude of the inward
force P near

eff and that of the outward force P far
eff . Those

quantities (P near
eff , P far

eff and P diff
eff ) are essentially deter-

mined by X and is not sensitive to the size of the cluster.

P diff
eff for the spherical shape at Dcrit

cm is larger than that for
axis (B); the cluster deforms in order to relax P diff

eff . For
axis (B), P diff

eff does not vanish and less than zero, which
means that the cluster is pressed by the difference between
P near

eff and P far
eff and becomes unstable inside Dcrit

cm . On the
other hand, at the same distance Dcrit

cm , P diff
eff almost van-

ishes for axis (A) and the cluster is stable against this
deformation.

We find that in the external electric field of the ion, the
cluster can become unstable even when the fissility X is
less than unity. Surface charge polarization has the main
contribution to the instability. Here, we see a character-
istic difference between metal clusters and atomic nuclei.
For atomic nuclei, the charge cannot be polarized because
the distribution of the protons firmly connects to that of
the neutrons. Hence, the instability caused by an external
electric field is a special feature of metal clusters. However,
since we use only a few deformation parameters to express
the shape of the cluster, we cannot describe in detail how
the cluster collapses.

In this study, we use the classical liquid model. In nu-
clear physics, the quantum effect of protons and neutrons
closely relates to the deformation of the atomic nuclei and
its stability. For more detailed discussion, it would be de-
sirable to treat the quantal behavior of the valence elec-
trons.

For actual reactions, the dynamics plays an important
role. Since we calculate the static potential energy, our
treatment is easily applied to the case such that the time
scale for the ion to stay close to the cluster tion is compa-
rable with that for the cluster to deform tcluster(∼10−12).
For other case, the instability is expected to occur with
the probability ∼tion/tcluster.
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